Posted on

endocannabinoid system mayo clinic

Please note that Internet Explorer version 8.x is not supported as of January 1, 2016. Please refer to this support page for more information.

Add to Mendeley

Mayo Clinic Proceedings

Potential Competing Interests: The authors report no competing interests.

Cannabidiol (CBD) oils are low tetrahydrocannabinol products derived from Cannabis sativa that have become very popular over the past few years. Patients report relief for a variety of conditions, particularly pain, without the intoxicating adverse effects of medical marijuana. In June 2018, the first CBD-based drug, Epidiolex, was approved by the US Food and Drug Administration for treatment of rare, severe epilepsy, further putting the spotlight on CBD and hemp oils. There is a growing body of preclinical and clinical evidence to support use of CBD oils for many conditions, suggesting its potential role as another option for treating challenging chronic pain or opioid addiction. Care must be taken when directing patients toward CBD products because there is little regulation, and studies have found inaccurate labeling of CBD and tetrahydrocannabinol quantities. This article provides an overview of the scientific work on cannabinoids, CBD, and hemp oil and the distinction between marijuana, hemp, and the different components of CBD and hemp oil products. We summarize the current legal status of CBD and hemp oils in the United States and provide a guide to identifying higher-quality products so that clinicians can advise their patients on the safest and most evidence-based formulations. This review is based on a PubMed search using the terms CBD, cannabidiol, hemp oil, and medical marijuana. Articles were screened for relevance, and those with the most up-to-date information were selected for inclusion.

We use cookies to help provide and enhance our service and tailor content and ads. By continuing you agree to the use of cookies .

The societal burden of ischemic stroke suggests a need for additional therapeutic categories in stroke prevention. Modulation of the endocannabinoid system (ECS) is a rational target for stroke prevention because of its effects on inflammation, vascular tone, and metabolic balance, all well-described stroke risk factors. In this article, we summarize the existing ECS clinical studies in human subjects’ research as they relate to conventional vascular risk factors associated with ischemic stroke. To date, 2-arachidonoylglycerol (2-AG) derivative endocannabinoids are consistently reported to be elevated in insulin resistance, whereas the N-arachidonoylethanolamine (AEA) endocannabinoid derivatives are elevated in obesity. The ECS role in metabolic health should examine the effects of 2-AG reduction and AEA augmentation as a means of stroke risk reduction. Cannabinoid receptors are reported on macrophages within atherosclerotic plaques and suggest a role for immunomodulation as a therapeutic for atherosclerosis through both peripheral immune cell CB1 antagonism and/or CB2 agonist. The effects of ECS on hypertension, smoking, physical activity, obstructive sleep apnea, heart failure, and atrial fibrillation are incompletely described and deserve further study. A limitation to ECS research is significant overlap with noncannabinoid molecular targets. Further exploration of the ECS needs to include the larger metabolomics context for a greater understanding of its therapeutic potential. Clinical translational studies in stroke prevention should be directed at ECS in metabolic balance and atherosclerosis.

T1 – Endocannabinoids and Stroke Prevention

Keywords

N2 – The societal burden of ischemic stroke suggests a need for additional therapeutic categories in stroke prevention. Modulation of the endocannabinoid system (ECS) is a rational target for stroke prevention because of its effects on inflammation, vascular tone, and metabolic balance, all well-described stroke risk factors. In this article, we summarize the existing ECS clinical studies in human subjects’ research as they relate to conventional vascular risk factors associated with ischemic stroke. To date, 2-arachidonoylglycerol (2-AG) derivative endocannabinoids are consistently reported to be elevated in insulin resistance, whereas the N-arachidonoylethanolamine (AEA) endocannabinoid derivatives are elevated in obesity. The ECS role in metabolic health should examine the effects of 2-AG reduction and AEA augmentation as a means of stroke risk reduction. Cannabinoid receptors are reported on macrophages within atherosclerotic plaques and suggest a role for immunomodulation as a therapeutic for atherosclerosis through both peripheral immune cell CB1 antagonism and/or CB2 agonist. The effects of ECS on hypertension, smoking, physical activity, obstructive sleep apnea, heart failure, and atrial fibrillation are incompletely described and deserve further study. A limitation to ECS research is significant overlap with noncannabinoid molecular targets. Further exploration of the ECS needs to include the larger metabolomics context for a greater understanding of its therapeutic potential. Clinical translational studies in stroke prevention should be directed at ECS in metabolic balance and atherosclerosis.

T2 – Review of Clinical Studies

Research output : Contribution to journal › Review article › peer-review

However, there appear to be distinct differences between anandamide and other cannabinoids with respect to their antinociceptive properties and other physiological effects which vary as a function of route of administration. It is not known whether anandamide acts at the same sites as phytocannabinoids to produce antinociception. The behavioral effects of THC and anandamide after administration suggest that they act, at least in part, in the brain and/or spinal cord. These studies suggest that anandamide is less potent and has a shorter duration of action than THC.46

Chemical Structures of Anandamide, Δ9-Tetrahydrocannabinol, and Cannabidiol.

CANNABINOIDS AND THE MANAGEMENT OF PAIN

The endocannabinoid system is involved in a host of homeostatic and physiologic functions, including modulation of pain and inflammation. The specific roles of currently identified endocannabinoids that act as ligands at endogenous cannabinoid receptors within the central nervous system (primarily but not exclusively CB1 receptors) and in the periphery (primarily but not exclusively CB2 receptors) are only partially elucidated, but they do exert an influence on nociception. Exogenous plant-based cannabinoids (phytocannabinoids) and chemically related compounds, like the terpenes, commonly found in many foods, have been found to exert significant analgesic effects in various chronic pain conditions. Currently, the use of Δ9-tetrahydrocannabinol is limited by its psychoactive effects and predominant delivery route (smoking), as well as regulatory or legal constraints. However, other phytocannabinoids in combination, especially cannabidiol and β-caryophyllene, delivered by the oral route appear to be promising candidates for the treatment of chronic pain due to their high safety and low adverse effects profiles. This review will provide the reader with the foundational basic and clinical science linking the endocannabinoid system and the phytocannabinoids with their potentially therapeutic role in the management of chronic pain.

Cannabis has a long and storied social and medicinal history dating back thousands of years.24,25 Regulations restricting Cannabis cultivation and distribution, especially as these pertain to marijuana, have preoccupied governments from China, through India to Europe and Great Britain, and across the Atlantic to the Americas for centuries due to its inherent psychedelic intoxication.26 The emotional and cognitive effects of Cannabis have mostly been sought for recreational or ritualistic purposes, and are commonly derived from smoking dried plant material or its concentrated oily derivative, hashish. Even though hemp has minimal potential psychoactivity, it is nonetheless subjected to the same restrictions as marijuana in many jurisdictions.

The synergistic contributions of cannabidiol to Cannabis pharmacology—and specifically analgesia—have been scientifically demonstrated. Preclinical and clinical data indicate that cannabinoids administered together are more effective at ameliorating neuropathic pain than the use of a single agent.104,106